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A law o f  p res sure  var ia t ion  in a near-wal l  radial ly  converging  f l o w  f o r m e d  in a v i scous  c on tac t  be tween  a 

f r e e  vor tex  tube a n d  a p l a n e  is f o u n d  analytically.  

This problem has been investigated in many works using the Navier-Stokes equation. As a result of the 

solutions obtained it has been shown that near a plane the vortex rotation becomes slower, the centrifugal force 

decreases, and a radially converging near-wall flow originates due to the pressure drop. It is typical that the vortex 

ceases to rotate everywhere except for a narrow region involving the vortex axis. As is noted and substantiated in 

[I, 2 ], this flow pattern differs from the notions of boundary-layer theory and allows one to neglect the effect of 

peripheral velocity on a near-wall flow at a distance from the vortex axis. 

These specific features of a secondary flow make it possible to consider it as a two-dimensional one in 

which only the section-mean velocity V and near-wall flow thickness ~ change along the radius. 

The same works showed that a numerical solution of this problem exists only at small Reynolds numbers, 

though, as is mentioned in [3 ], it is possible in principle to obtain a solution at any Re. 

By virtue of the existing difficulties in solving this problem, another approach is of interest to account for 

forces of viscous friction and determine the pressure distribution on a streamlined surface. This approach is based 

on the force balance equation for a small annular portion of the near-wall flow. 

To derive this equation we distinguish in the near-wall flow an annular portion with a width dr  and a 

thickness 6 that is at a distance r from the axis of the vortex tube (Fig. I). Here we neglect the forces of flow 

friction against surrounding particles assuming them to be insignificant compared to friction against the plane. 

Assuming the pressure forces affecting the distinguished portion to be counterbalanced by the forces of 

friction against the plane and the inertia force caused by flow acceleration as approaching the axis, we have 

~FAp = ~Ffr + ~Fin ' (1) 

where 6F~p --- 2:r6 [(r + d r / 2 ) ( p  + d p / 2 )  - (r  - d r / 2 ) ( p  - d p / 2 )  is the resultant of pressure forces affecting the 

distinguished portion; t~Ffr = :rCf [(r + dr~2)  2 - (r - d r / 2 )  2 ](/9 V2/2) is the elementary force of friction against the 

plane; 6Fin -- d m a  is the elementary inertia force, with d m  = T~o6 [(r + d r / 2 )  2 - (r - d r / 2 )  2 ] being the mass of 

the distinguished annular portion. 
Since the acceleration of the flow decreases with an increase in the radius, i.e., a = - d V / d T ,  and the time 

dr ~- d r ~ V ,  then a -- -V(dV/dr) .  Substituting these relations into Eq. (1) and neglecting the terms of the second 

order of smallness, we obtain a linear differential equation of the near-wall flow 

d__p_p p 
dr + - = Cf - p v d V  (2) 

r d r "  

As follows from [2, 4 ], in the problems of this class the mean flow velocity V is usually taken to be in 

inverse proportion to the distance from the coordinate origin, i.e., V = V2r2/r ,  where 1/2 and r 2 are the section-mean 

velocity and the radius of, e.g., a narrow flow section II, which are assumed known and constant in a stationary 

flow. We take the boundary between the flow and the motionless surrounding medium to be described by an 
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Fig. 1. Computational scheme of axisymmetric near-wall flow: 1) free vortex 

tube; 2) plane; 3) near-wall flow. 

equation of a straight line in the form 6 = br + c (where b and c are constant). Substituting the last equations into 

(2) we have 

dr r -2 r 2 (br + c) 
(a) 

An equation similar to (2) or (3) can be obtained by calculating the elementary force of friction against 

the plane by the Newton law [5 ]. Then, t~Trr = 4" I . td f (dV/d~) .  Comparing this expression for 6Tfr with the previous 

one, we have 

2v d V  

Using the earlier assumptions about the change in the velocity along the radius (Vr = V2r 2 == const) and 

the linear relationship 6 = f ( r ) ,  we have 

2vr 2 d V / d r  const 

Cf = V~2 ;2 d ~ / d r  - Re 2 

It is seen that the effect of the Reynolds number in a radially converging flow should differ from that in a plane- 

parallel one, in which Cf is proportional to Re -~  
Assuming the viscosity to be slightly variable, we can approximately consider Cr to be independent of the 

radius. 
Using, e.g., the integrating multiplier/~(r) -- exp ( f  dr~r)  = r we obtain the solution of Eq. (3) in the form 

[61 

1Is p ~ m  

r 

r 2 Cf 2 
2 r 2 ( b r + c )  + r d r + C  o , 

and after transformations 

C O pV~2r~ (_~ln br+____~c ] 2 ) +  (4) 
P -  r 2r 

We consider a particular case of Eq. (3) which is based on the results of [1, 2 ], where it is shown that near 

the plane and at some distance from the vortex axis there exists a flow directed to the plane and the axis, with the 

radial velocity component exceeding the axial one. This allowed the authors to construct streamlines so that the 
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thickness of the near-wal l  flow t5 reduces with the radius,  with s t reamlines  leaving the plane on approach ing  the 

vortex axis. 

Assuming the descr ibed qualitative charac ter  of the flow to be also preserved at  large Reynolds  numbers ,  

we take in Eq. (3) c = 0. In this case (3) is reduced to the form 

ap + p cef 
3 ' 

dr  r r 

where Cpf = ( p V ~ r 2 / 2 ) ( C f / b  + 2) is constant.  

We consider  some part icular  cases of the solution of Eq. (5). For p --- const there  takes place the solution 

with a general  integral  

C O p = _ C p f  + _ _  
2 

r r 

Since pressure  cannot  be negative, the condition of the origin of such near-wal l  flow in the form C O > C p f / r  follows 

from the general  solution. 

For  an  ideal gas,  which obeys  the equation of state p = p R T ,  assuming  the flow process to be polytropic 

p / p n  = const,  we can find that  the medium densi ty  p is re lated to the pressure  in section II  and  in the cur rent  

section b y  p = p l / n p ~ n - 1 ) / n / ( R T 2 ) .  

Then  Eq. (5) is reduced to the Bernoulli differential  equation 

1/n  
d p +  p__ = C r  p (6) 

3 
dr  r r 

where Cqf = ( V X r ~ / 2 R T 2 ) p ~ n - 1 ) / n ( C f / b  + 2) is constant.  

The  genera l  integral  of this equation has the form (n ;~ 1) 

n - I  
1 n - 1 n + l  n 

P = r n + 1 Cqfr n + C O . 

For an i so thermal ly  flowing ideal gas (5) acquires the form 

dp + 19 -~ CT f 17 (7) 
3 '  

dr r r 

where CTf = ( V ~ r ~ / 2 R T ) ( C f / b  + 2) is constant.  

The  general  integral  of this equation is 

cTf 1 p = exp In r + C O 
2r 2 

An analys is  of general  integrals  shows that physical and  geometrical  factors are  the basic affect ing ones 

that  a re  in ter re la ted  and  cannot  be chosen arbi trari ly.  To est imate the effect of them we reduce the genera l  integrals  

to dimensionless  form using the boundary  conditions for two annu la r  flows lying on different  radii  (Fig. 1). 

Then ,  taking p = Pl at r = r I and  p = P2 at r = r2, we obtain 

for the case of p = const 

= v - i  + G ( 7 - 1  - 7 - 2 )  , (8) 
P2 

for a polytropic flow (n ;~ 1) 
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Fig. 2. Calculated distribution of pressure on a plane: 1) for an incompressible 

flow Cp = 10; 2) for a polytropic flow Cq ffi 1; 3) for an isothermal flow CT --- 

2. Vertical dashes,  position of section I; dashed curves, uncomputed region. 

/ I  

~ =  I + 1 ' Pl Cq n-I  - i -  ~ n-I  

P2 n 
(9) 

for an isothermal flow 

Pl _ exp [CT(1 - - 7  -2 ) + In ( 7  -1 )1 ,  (10) 
P2 

where 7 =  r]/r2 is the relative radius; Cp = (pVZ/2pz)(Cf/b + 2), Cq = [(n - 1 ) / ( n  + 1 ) ] (V2 /RT2) (Cf /b  + 2), Cr 

ffi (V~/4RT)(Cf /b  + 2) are  dimensionless constants for corresponding flows that allow for the effect of physical 
factors only and involve known parameters  in section II. 

We consider  the effect of the dimensionless constants of flows and of the relative radius 7 on the ratio of 

pressures pl /P2 . In this case we increase 7 starting from unity and assign various values of Cp, Cq, and Cr.  

An analysis of Eqs. (8)-(10) shows that if the values of dimensionless constants exceed minima which are 
equal " ~min cmin c~in to t.~ ---- 1.1, _q ~ 0.2; = 0.5, then pl/P2 _> 1. Thus ,  the obtained minimum values of dimensionless 

constants de termine  the conditions of the origin of a near-wall flow. 

Figure 2 presents  the form of the dependences  P]/P2 ffi f(7, const), which have a maximum near  7 ffi 2 and 

from the analys is  of which it follows that  the descending  branches  of the curves should be exc luded  from 

consideration,  since pressure cannot  decrease opposite to flow. 

The  radial position of the maximum determines the region of near-wall  flow propagation, which for different  

conditions does not exceed 7 - -  2 - 4 .  It follows from analysis of the relations between pl /P2 and  r l / r  2 that  the 
considered flows can have large pressure gradients.  

The  results obtained make it possible to estimate the mean flow velocity, which for an isothermal  flow is 
equal to 

V2 = u ~Cffb-+ 2 R T  . (11) 

r~min Since Cf/b  > 0, then 4CT/ (Cf /b  + 2) is also positive. Assuming Cf/b  ~ 1, and CT = "~T we find that 

4c~.in/(Cf/b + 2) < k (where k = 1.4 for air). Thus,  an isothermal flow can appear  as a subsonic one. 

The  result  of possible flow velocities agrees with the data of [4 ], which considers the plane adiabatic and 

potential flow of an ideal gas on a plane in the presence of a source (sink). It follows from the solution of this 
problem that this flow can be ei ther subsonic or supersonic. 

The  obtained results are suitable for estimation of the effect of different  factors on a secondary  flow on a 

plane, which are  necessary,  for example, for practical investigations. 
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N O T A T I O N  

Re, Reynolds number; Cf, coefficient of friction resistance; a, flow acceleration; n, polytrope index; k, 
adiabatic index; r, radius; 7, relative radius; p, density; R, specific gas constant;/,,  dynamic viscosity; v, kinematic 
viscosity. Subscripts: fr, friction; in, inertia, f, fluid. 
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